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ABSTRACT

The problem of potential éteady subsonic flow for lifting
surfaces is considered. This problem requires the solution of
an integral equation relating the values of the potential
discontinuity on the lifting surface and its wake to the values
‘of the normal derivative of the pofential which are known from
the boundary.conditions. The lifting surface is éiﬁiéé&riﬁzo:
small (quadrilateral hyperboloidal) éurfacé elementé,rzzz '
which are described in terms of the Cartesian components of the
four corner points. The values of the potential discontinuity
and the normal derivative of the potential are assumed to be
constant within each element and equal to their values. at
the centroids of the elements. This yields a set of linear

algebraic equations. Numerical results are in'goqd agreement with

.existing ones.
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LIST OF SYMBQLS

a. base vectors,® defined by Eqg. 2.2

X, ¥:2
qu.?z
£, 7

See Egs. 2.13 and 2.14

Egs. 1.10 and 1.1l

Egs. 1.10 and 1.1l

Lift coefficient per unit angle

of attack

Defined by Eq. 1.4

Defined by Eg. 2.9

See Egs, 2.9 and 2.10

normal to the surface Z?at Ph

number of wing boxes along x and y

directions, respectively
control point

See Egq. 2.7

See - Eq. 2.7

See Eg. 2.5

See Eq. 2.40

See Eq. 2.5

Velocity a#_poihtigh o;'E;

See Eg. 2.8

Cartesian coordinates
Defined by Eg. 2.1

Defined by Eq. 2.4



List of Symbols, continued

2g
2w

¥
Yy

Surface of the body
Surface of the wake
Perturbation aerodynamic potential

value of ¥ at -13-5
SPECIAL SYMBOLS

Gradient operator in x, y, 2 COOIr-
dinates :

Trailing edge



SECTION I
FORMULATION OF THE PROBLEM

1.1 Introduction

References 1 and 2 present a general theory for compressible
unsteady potential aerodynamic flow around lifting bodies |
having arbitrary shapes and motions. Reference 3 presents a
general numerical formulation for complex configurations in
steady subsonic flow. Results are presented in Ref. 4. Hdwever,
such a formulation is not applicabie to zero—thickness configur-
ations (lifting surfaces). Tﬁe present work iﬁtroduées-a
formulation suitable for use with lifting surfaces,

The distribution of the perturbatién aerodynamic potential
q , around a body of arbitrary shape is given by the following

integral expression

4T E ¢ :._gﬁ[ﬁﬁi"_% - np._f‘l J,”o{z |

21 an Nr (1.1)
.
where
E = 0 inside the body
E = 1 outside the body
E = 1/2 on the body
(1.2)

= is a surface surrounding the body and ‘its wake, and n
represéﬁts the normal to the surface.-
If the distance between the upper and lower sides of
the surface goes to zero (zero-thickness body), one obtains a

1ifting surface formulation

= // Da;% (T[)O(Z : -‘ .3



where

= ¢%iﬁﬁ§1 | (1.4)
The subscript u stands for upper and 4 stands fof lower.
Equation (1.3) shows that the potential can be represented

in terms of doubletson the body and on the wake. On the wake,

the value of P is constant along a streamline and equal to D

~at the trailing edge.

1.2 -Discretization

By dividing the lifting surface into small elements (see
also Ref. 3) and applying the mean value theorem for Eg. (1.3),

one obtains

qo:ZN b f 2 ()48 O (1.5)
ﬁ:/ E'_“é

where D& are suitable mean valueswithin the element, and the

summation is performed over the eiements of the lifting surface

and of the wake, which is approximated by straight vortex lines

starting at the lifting surface trailing edge. The pefturbation

Velogi£Yy1f:%%h at the point P, , is given by

- — - —
’272:['\7;{”_( =2 Dy Vg
PP | (1.6)

where



— = ", __!_
vz | Vo & (E)dz]
Zﬂ P=Pan
(1.7)
igs the wvelocity created by the element zié . The normal de-

rivative at the point P, of the surface is given by

(22) = W-B¥=% Dy fu- VR
P< Py k=1 (1.8)

The boundary condition to be satisfied at L points (L is the

number of lifting surface elements) 1is

i7:}€ =(f’+-ﬁa.?? =0

(1.9)
which, when combined with Eg. { 1.8) becomes:
S Aup Di = By
' hi Q.10
. for the L unknown Dy . In Eg. (1.10)
Aré= Vig - 1n
=f=) -y 4
B (ort o by h | (1.1

—
where i is the unit vector in the direction of the x-axis.
The contribution of the wake elements adds only to the row of
lifting surface elements in contact with the trailing edge;
. i

Once Eg. @.10) is solved, the velocity.qz‘can be evaluated

: L ' -
throuch Eg. (1.6} using the same coefficientsj Vik.



SECTION IX
HYPERBOLOIDAL QUADRILATERAIL ELEMENT

2:1- Introduction

Reference 3 introduces a new type of surface element, the
hyperboloidal quadrilateral element, a short description of
which will be given here. Then, the gradient of Eq. (1.3)

{the integral is obtained in analytical form in Ref. 3) will be
computed and further, the result will be put in a siﬁple vector

form.

2.2 Surface Geometrylwith Hyperboloidal Quadrilateral Element
Let the geometry of the element Zg be described by the
vector
;;__ 2 el L
SR f)(j?J § )-
) (2.1)
t A :
where § and —f are the generalized curvilinear coordinates
(Fig. 1).
The two base vectors are given by
L
> P
R (2.2)

and the unit normal to the surface is obtained as

-
a,;

e

Rox Gal | (2.3)

The surface element AT is

(;{Z:lﬁ)td§ix azd§2J: ]Ef.xa;fdf!d§z

{(2.4)



The expression for r is

X = Xp
2-1 ¢ &n |
z - Zx {(2.5)

Now, consider the equation
P + PE+ + ENg
C ! < -
(RRERE (27 €/ (2.6
. -
The above equation represents a hyperboloid (Fig. 2). Fh
represents the centroid of the element 2{  with ?5??=:0-

The corner points of the element éig g are E&iﬂ ?}..,

Ei+, fi_., and they are fed in as geometry inputs in the computer
program implementing the theoretical formulation. The relation-

ship between the corner points and-_f;C ‘ 51 ,'52_, 5;3,<is

() [~ . . ) _ r__b ]
e: ! l ! U lq++
<-—-> F = ’ ﬁ_,_, .
- (P . b P-s
:53 l -~ — { ’ .p,__._.ﬁ

- — ) (2.7}

2.3 "Thé Doublet Integral
‘Looking again at Eq. (1.13), it can be written in the

folioéing form’
Vie = Ty (1) =T, (6-0) = To (-0 1) 3 (1),

where

ﬁf?,f):-Zﬁ%IpG,?) | (2.9)



where the doublet integral ID(?., 7 ) was obtained in analytical

' form {Ref. 3, Eg. 6.6) A&

~» . -7

Ip (;‘-, 7)-‘ 'é‘an'f[ li’-x Qe - éaxaal

?:!(é: ar"fa‘t)‘

{(2.10)
In order to perform the gradient derivative in Eg. (2.8), it

is convenient to consider the directional derivative in the
—

' —» 2 el
arbitrary direction Yy . By noting that only 2 = pP- Po

—lp
depends upon F,, or

2L 5 R =
a

2
D
. _"é:O ‘ (/g':sz)

Y (2.11)

one obtains

/3-_2—1‘1___‘2_ ’é‘ '{(—szl g’(at)
op By Vig] 94 xa.

(r

(f§3<a;‘ étx a:,)a




_ \Z17(4 & xT) { )

§.9 (34, x& ) (4xa, T &) 198G &, x &)

{ (V@ Fx @+ Tx @, Px@)(q-3)(9 T xB0)—

(Tx@, - T )TV G- ax)+P 22,43
_ i, T+ TxE TRE T T xd
= - —— a,-9xa, t9xa,-Vxa.)q-9 q.-a,xa, —

(ExF, FxE) (4D T Ex % 4V 5x 2 T 7))
{2.12)
Next, it is convenient to introduce some classical concepts

of tensor analysis. Consider the relationships between the two

sets of conjugate base vectors

Zz'f_ Ry x A3 . az_ Qixar . 51:3" T, X Oy
ST N e
ar-@axay &y Eoxdy A EY
and
—5 T3 —3 = S
- a2 " xa a _a 43 -~ _ axda
A= === 7 2T = o —3 ) A3 = ~——=3
a’ a*xa af- &*xa a-arxd®
' : (2.14)

where '5‘3 = n. Note that

~atz a;=n : (2.15)
and ‘
—f =2 = / _
al.a%a s —e = (2.16)
a;'a?.xa3 fa:kazf



Furthermore, using classical notations, it is possible to

write :
— ) - 2 — 1 - =
V=Va,«via, +Vasz Pay

i _, ., _, _ “
=y, a +l)p_a_-+1?ga:\)ia (2.17)

with
‘ — __l
V = \).aji
L% = Veay {2.18)
Moreover, it is convenient to consider the three derivatives
-— T - _ — ‘
’DI%baﬂ 0 Q/aailand 2Ip/on . Since V is an arbitrary
vector, Eq. (2.12) with V= &, , yields
21y _ / | L
5, \gxa Flairaalt 4l
o, _|1xa1\lQK 2|7 121 : ,
\\\ o _ _
[ (QMQ:/EZ{{(QL*‘ZXQ!'&-!YQ&)?-‘E 9-a,xQy —~
' ~

N

_— —_ - v . —_ \-—- — -
(i*a.-ﬁxﬂz)(i'afi'arxaz-“*araf"ﬂé‘?)}

- G-, xd, {

- ]gtx&,llquatlz [i{ {(Q»ﬂ.;a;' ‘z_‘—i.az '.az)i?i‘_

Y
ta|

R

—_ X
|

P

E (2.19)



Similarly, for ;; = EEZ
(R AN (@ox@, GxBy+3xd,-Ton@,)T G 3+ Eoxdom
7@ |g<al|arae 1T | o )
(gxa, éixag)(éi'&é_é}éi4x51a-+ziz a,x0, g é:}}
_ 7., xa I A
BT PrIE Aty {( 2988~ 8 25 0)5 §~

- = _
xa :

W;{ _ laxad . (2.20)

Finall?;: for ¥ =M and using Egs. (B.l) and (3.45) of Ref. 35

vields,




~9.2,9.a.\q.a,(a. a

e ralrasa-y

9 Q=g 02) G0, (7B T <G A d, d)] =

— _ P g 2
XAy QyxQy }QinP

(2.21)



or
oz, _ 3u@-h_T-4, ., GxE.n i
e z) laxal g1 Jaxaalt
‘7 | (2.22)
Finally, combining Egs. (2.13) and (2.18) yields
oI - 5
—— = P Ip =
s VB Ip .
—_— - 3... -
(l);a:-}vzaz_-f-v a3)~ VOII):‘.
V'OID+V}‘DZD +P33ID _
?a, D @y Dagz
- — iy ID — - 7 —_— s— ;
U [ xn 22 s, 22 LG, 1T, @;:D] 1
2y 018} D lanXﬁL\
or o (2.23)
9 — N _ C e — -— _'.‘--
Ib__“l)_ { an(__za_,-xal E‘fz)-#
PP g xaal (2 g x . ]

(2.24}
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since, according to Egs. (2.13) to (2.1l6), and Eq. (3.44) of

Ref. 3,
| F TG AxEat AikE, T duxT) =
eup— —~ QXN G QXA+ A xQy 9 LX) =
o, ra, |
\Zoxa, | (- a5 + 105 ar)
=~ Tx(a'xa?) ot < gxa.
g x ( Ka):a'xaz.&‘:«} gxits
(2.25)
and \ ﬂ
(-Mx&, 2 Qx Ay~ 0y xR, G-y x7) =
o x|
\&, xaz|(~a%q - a*+a’y.a*)z
2 gk (A% A ot = - Tk,
al. axas g_‘
(2.26)

Equation (2.24) is eguivalent to the desired expression

for W, Ip:

E— —a. A ?Ei [ i
Loz Bl (q“’""’Jq T

5 4 @\Altérnative Proof

In order to verify Eg. (2.27), note that according to

Egs. (2.9) and (3.50) of Ref. 3



I, R I3\ 5 4 XAz )~
2F0Y /faf'a [%Lb]b “V”(ogra;?)' ( 3 )
— | - =
== oS‘%‘(?‘Hal"al]
(2.28)
Noting that
O — — — —— —
,;-]j;-(éixa:%5—%—(%+7%)x(@,~+7pj):o
57 (278 5% (P +ER)x(PsFP)=0
{ (2.29)
vields '
| ot T ixds )ﬂ
Ly ( gl laxadt/
7o a.L-'El e é: a_l- qxaa' —
—— = +9 QA [~ p— z
"% “: o * l( 17 |3 ) ]q_xaL}z}
0 I .9 7 . ~h = = & g xQy
e A Ay - {4-A :
0¥ {'ng[‘ii 2= (20] |q xa, [*
P 2x0a . g m, Gk Py G (-3 DT )-
oF 3P T papf (@1x82+ 9 xbs) e ( *T;{,?J—
— - - - - = e e !
[Q.q_(a;xtflz-faxpg}—3ﬁxalﬂ-a’.f‘?‘q(s

(2.30)

and, similarly, interchanging indices,
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.

(¢ Q_(Qa,xa,-rix%)—rs(gxa,_g Lq, ‘l

{(2.31)

and thus

121 R _ - _ _ _ -
E%WZ[ZQ 2 a XCI-Z +3 (ﬁxd,i-a_z.. Qxaz z-a')]___é_i?

(2.32)
On the other hand
0 G g () | Eoxael=
9. = Ei -Q ., x Ay
=-V-V ' =
SEAE
gxfﬁz - = g
vl g T L E & (3]

V(37 & x@-33d, 2 'ﬁ"]ﬁ‘-—-‘s -

=D [2 B4a 83 (348, 8B T8 b
(2.33)

==~ Q.a,Y-9x0, +9-0,Y- Ix0, (2.34)
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—

Since V is an arbitrary vector, Eg. (2.25) is equivalent to

-V = ( ' ) !&_,xal\:[lq-'iﬁ,xﬁfz 1 3(2x @, 282~ 7xa: Q0 ‘)]i‘i]i

(2.35)
Equations (2.32) and (2.35) are the desired proof of the

validity of Eg. (2.28).

2.5 -Singularity at g = 0

If the point 56 belongs to the surface &4 , the integral
in Egq. {1.7 ) is singularf In the following, the type of
singularity is analyzed and it is shdwﬁ that the principal
value of the integral must be used. Consider a small circle
of radius ¢ in the neighborhood of the singularity. Assume
that the point EB is at vefy'small distance from the surface
$ %z and consider a small circular element Zg on Zé with
the center on the normal projection of E; on the surface Elé.
and radius € ;

Assuming the z-axis to be directed along the normal n,

" EBq. (1:7) reduces to

Vi = v // ( )dE + Vg |
P2 b ‘ {(2.36)
with (for symmetry reasons, the derivatives with respect £o
xq and Yy are Zexro)

ﬁ:ﬁ://:a% (?’—)dZ:ﬁzfa'%Q (fl% - polpd b=

* P

» 1is not on the boundary of X,
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S
— — f L ¥
= 2] AP — 2/ f=
N (O/ [fl_ ?olj_a/?_ .F 3 0 /fl ?02_)5'/2
&
_oinl - l | ] -
AL e HmerEd, C
2"“5[ - ‘E 27—
i [Jpl %: )3/?.}]0 (E 21‘-2‘ L)-?/?‘.
(2.37)
As ZO épproaches zero, one obtains N '
- ! - = 0 ! e
%= [ (F)dE = fu g (£)dE
- Z4 ) o (2.38)
with
f0 2 (F)dT= || B (£)d —2T ke
Zt o T T (2.39)

Tt may be noted that the first expression in Eg. (2.38)
is not singularf Hence, Egs. (2.8) ahd (2.27) (obtained by
using the first integral in Eg. (2.38)% are- still valid even

.1f the point is on the surface,.

2.6 General Element

In this subsection, it is shown how the results obtained
thus far can be rewritten in a more expressive fashion. For
the sake of simplicity, introduce the following notations

(Fig., 3}

* P, is not on the boundary of Z_ g



{(2.40)
" Nete that
'51(721) :(élwé-z)/z
6_&_(‘?1-*) 2(54— 6_33)/2
-52_1 ('E: ”:(&)—IV—— 54)/2
¢, §=-1)=(&, - Q3)/2
| (2.41)

Next, combining Egs. '(2.7), (2.27) (2.40), and (2.41), one

obtains

s Tl ) =Ty i)+ Ty b=ty =1y =T (1, -1) =

[ A, 2x3r -4, 9x&, _ -
12| g x ) (2 1515,(1 =1, 95

~ [ g:zil E:Xaa _ é}f{p E:X'_k ]

| T jaraalr gy A xalt dg=a, e

[ & LA 34 qxa,] _
1o 1g & 1" g1 laxd, |\ d§=-1, 9= -

(Lds Tede 37 Zxd, |

21 18 & g1 TR Jpe g, -t
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or ¥

———

Toe Q@ -8) Fx(A-8) _8.(§-8) T (S -G
RN 18,1 (@ - aI* (R & (B -

0 " Zﬁz'(gﬂ"a%) _§§31<(éi-2§z)
| G| [ B2 (B-@) (@) (B (@&l

8- (@ -Qs) ajx(@i—gg)_t__gg.@@,) Dix(9a-Gs)
18] [@(@-@1 i@l V@ (@a- &Y

5‘}(&7“@;) Q4% (Q) - Qq) +-§4'(54—§3)§4x(a4-53)

— —= g ——t —— P ——
| Q) 10 x(@) -Gyl | @3] Qe n (Te-y)°
(2.43)
or L L .
— Qe xQ [&4- 4 -0 G« d, Q ~ &, CQqJ
hﬂ — - 2 R — "{'
| Qe x Q1° \ G4 | @y
ﬁg;_x Q, { 25]'251 -~ 55}‘2§__-+ 251 55;'~ aﬂ‘éﬁz;}’*
VG x @, 1% \ &, | (222 |
51)&@&__[ ﬂlJZE“Qa‘§3 + E&jéi"ﬁl E&]
—— = - +
lGL?‘-@z) \ z.i & \Qzl
?§73x é;. [:_853-Z§;*-Ea‘25% - 51n5ﬂ>m-33345h-}
[Gs » Gel® 183l [ Bel

(2_.44)
It may be noted that each of the four terms depeﬁds upon two
corners of one edge of the element. Hence, Eg. (2.44) is
independent of the numbering used (it dependsjhowever, upon

the direction of the numbering which is anticlockwise with

respect to the normal n).
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‘Next, consider the limit of Eq. (2.44) when one edge
shrinks to zero, that is when the hyperboloidal element
. reduces to a triangular element. As mentioned, the numbering
is inessential. Hence, without loss of generality, it is
assumed that a’q_——v @—3 (see Fig. 4). By setting
Qe Q3= A Qu3

{2.45)

—

, where(ﬂqg is a unit vector and A tends to zero. The last

term of Eq. (2.44) yelds

v Q31Q41 (53.-53»@-@_4_ E&-&q*@;-&d)‘

-0 |Q1x Qa 1 Qs - 184]
L, 2 @3x6243‘___(_ AQ3 QH 2 Qa - Qa3 )__
220 AT 83xBazl” \Gs\ @4‘

Lo Q“(Q“\ (-————"@_3 + §4 )-§¢3:O

8a>Q3 |Qy » Qa3 | Qs | Qal
| (2.46)
Hence, for triangular elements
N ;;;&T- %_3*&3&&@3 @'3—&1(33 4 &nfﬁz:al‘a‘%]_ﬁ
1a; v @1 11 . ' (@
-&\K-az [a-l'é_l"'gt‘ﬁ-l CQL@'L G.z_l Q, ]
) — 1 = t— +
b, x & Q) \le

51-;@ [’az'_az"az'z‘ia 4 53'@*6@'53
\ &1" &3\?_ \Qz,' } 53 I |

(2.47)
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Similarly, for a polygonal element with n corners

p—— ——
— i,

' aj;é - 722 +‘1113 + ot ) !
(2.48)

with

7. BuE (8805, 5:8-G)
f @ x @ | G| |6/ |
_ {(2.49)
Equation (2.48) can be proved as follows. The solid angle
is an additive guantity. Hence, ai£  which is the gradient
of the solid angle is an additive quantity. . Thus, the
general proof is obtained by mathematical induction: assumed
t9 be true for n = Ny it is shown to be true for n = ng + 1.
Thus (see Fig.éi for the cage ng = 4), noting that ‘??j=‘*ﬁjg

(q,-/_}; AIJFHB = {"}hhé),q +(ﬁ112)5 =

{E}lr—ﬁ izjq"f'7-——;’5'*'1!"}.7_}-\”)1'(?:)1‘{‘?‘2,3-7—1'.;3):

(2.50)

in agreement with Eg. (2.48).
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SECTION III

SUMMARY AND RESULTS

Consider Eq. (1.3); dropping the subscript 0 yields

¥ = //.D i (L) d= +// DTE e (L)ds _(?.1)

Assume that the geometry of the wake is prescribed as

stralght vortex 11nes or from the preceeding iterations
(See-Fig. 5; for a description af Eﬁe iteration procedu:é
‘sée‘Ref} 5). Divide the wake into L strips, Z:f , each bounded
by two streamlines. Divide the surface of the bédy into
.small polygonal elements (hyperboloidal quadrilateral, or
tfiangular, for 1nstance)

Then, Eq. . (3 1) can be approx1mated by

L
+ Z'ADTEJ]/ )4/2{
J:f i}_
{(3.2)

Next, assume that, in virtue of the Kutta condition it is
possible to replace D ¢ with the values of D at the ‘centroid.
%Y, of the element having an edge in common with the strip Z,.

Then, Eg. {(3.2) ‘can be rewritten as

¢ = Z JDA/ ()O{Zh .(3.3)

where

(3.4)
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if 2|, has no edge in contact in contact with the wake, while

%
2 T Epr 2y (3.5)
if 2, has an edge in contact with the strip E:e.
The perturbation velocity, Vi , at the centroid, F%

of the element Z | is given by

—_ _ N —
Vi = [VO SOJ.P-:-_;S“ ~ ‘j; Dy Vit (3.6)
where :
Vig = (-‘f/’;é/ 5% [—%r)a{?:g )';5*:?:7 (3.7)
5 g

Finally, imposing the boundary condition at the centroid

of the elements, =) , yields the system

[’?MHD#%:?BU) - (3.8)

where
Ank = Vnd -y (3.9)
while
roY
B, s (— Js_= (3.10)
h (@n)P-ph o

is prescribed from the boundary conditions. Solving_Eq. (3.8)
yields_the-coefficient ?ﬁ: then,.it is pgssible to gva}uaté
;ﬁ‘through Eg. (3.6).

The integral in Eg. (3.4) can be evaluated by using
Eq. (2.48) for a general polygonal element, or Eq.(2.47 for
triangular elements, or Eg. (2.44) f&r hyperboloidal quadri-

lateral elements . Note that, if the element Z 1 includes
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a strip §:€, it will be convenient to approximate it with
a series of guadrilateral subelements. Thep 2:;'can be
treated as a single polygonal element: in this way the con-
tribution of the edées (which would eventually eliminate
each other) need not be evaluated.

This formulation has been implemented into a computer
program, ILSA , {acronym for Epcompressible Lifting Surface
Aerodynamics). See also Ref. 5. Figure 7 shows the 1ift
coefficient distribution per unit angle of attack for a
rectangular wing of AR = 8, at Mach Number M = 0. A conver-
gence study for various numbers of wing elements is also
shown and compared to the result obtained by Yates (Ref. 6).
The results obtained with ILSA indicate good agreemeht with
existing ones and a‘fast rate'bf convergence. As menticned.
before, a better wake geometry can be obtained by an iteration

This process is shown in detail in Reference 5.

process.
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Fig. 3. Hyperboloidal-Element Geometry with Definition of the

Vectors Eh
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Fig. 4, Triangular element as the limit of a

hyperboloidal guadrilateral element
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Fig. 5. Pentagonal element
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Convergence problem: section lift
coefficient distribution per unit
angle of attack for a rectangular
wing of AR = 8, M = 0 and comparison

" with the result obtained by Yates.



